Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity

نویسندگان

  • Yao Zhang
  • Qiu-Shi Meng
  • Li Zhang
  • Yang Luo
  • Yun-Jie Yu
  • Ben Yang
  • Yang Zhang
  • Ruben Esteban
  • Javier Aizpurua
  • Yi Luo
  • Jin-Long Yang
  • Zhen-Chao Dong
  • J G Hou
چکیده

The coherent interaction between quantum emitters and photonic modes in cavities underlies many of the current strategies aiming at generating and controlling photonic quantum states. A plasmonic nanocavity provides a powerful solution for reducing the effective mode volumes down to nanometre scale, but spatial control at the atomic scale of the coupling with a single molecular emitter is challenging. Here we demonstrate sub-nanometre spatial control over the coherent coupling between a single molecule and a plasmonic nanocavity in close proximity by monitoring the evolution of Fano lineshapes and photonic Lamb shifts in tunnelling electron-induced luminescence spectra. The evolution of the Fano dips allows the determination of the effective interaction distance of ∼1 nm, coupling strengths reaching ∼15 meV and a giant self-interaction induced photonic Lamb shift of up to ∼3 meV. These results open new pathways to control quantum interference and field-matter interaction at the nanoscale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shifting molecular localization by plasmonic coupling in a single-molecule mirage

Over the last decade, two fields have dominated the attention of sub-diffraction photonics research: plasmonics and fluorescence nanoscopy. Nanoscopy based on single-molecule localization offers a practical way to explore plasmonic interactions with nanometre resolution. However, this seemingly straightforward technique may retrieve false positional information. Here, we make use of the DNA ori...

متن کامل

Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves

We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided ...

متن کامل

Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics

Current methods to study molecular interactions require labeling the subject molecules with fluorescent reporters. However, the effect of the fluorescent reporters on molecular dynamics has not been quantified because of a lack of alternative methods. We develop a hybrid photonic-plasmonic antenna-in-a-nanocavity single-molecule biosensor to study DNA-protein dynamics without using fluorescent ...

متن کامل

Imaging and controlling plasmonic interference fields at buried interfaces

Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is fo...

متن کامل

Adsorption of H2S molecule on TiO2/Au nanocomposites: A density functional theory study

The adsorption of hydrogen sulfide molecule on undoped and N-doped TiO2/Au nanocomposites was investigated by density functional theory (DFT) calculations. The results showed that the adsorption energies of H2S on the nanocomposites follow the order of 2N doped (Ti site)>N-doped (Ti site)>Undoped (Ti site). The structural properties including bond lengths, angles<span id="...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017